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The evolution of the rotation of a satellite is studied. The use of the complete formula of the dissipative 

aerodynamic moment reveals qualitatively new effects, distinct from those previously described (l-41. 

The influence of the untwisting component of the aerodynamic moment, due to the gradient of 

atmospheric density along an elongated spacecraft, is also investigated. 

Investigations of the effect of the dissipative aerodynamic moment (DAM) on the evolution of 
rotation in a satellite [l-4] have been based on an incomplete expression for the DAM, which 
omits the “untwisting” component. This component is due to the rotational effect of the orbital 
frame of reference. As a result the DAM vanishes together with the relative angular velocity of 
the satellite, rather than together with the absolute angular velocity, as is usually assumed in 
studies of the evolution of rotation [l-4]. 

1. A MODEL OF AERODYNAMIC ACTION 

Assuming that collisions between atmospheric molecules and the surface of the satellite are 
absolutely inelastic, the formula for the dissipative aerodynamic moment (DAM) has the form 
L 31 

M, =f poV{[eyxr,I((~-~,~~r,,~~+(e~,~>~~~~-~,~~~,~~~,~~d~~ 
S 

(1.1) 

e,=V/V, o=fl-0, 

where p, is the density of the atmosphere, V is the velocity of the satellite’s centre of mass, CJ 
is the absolute angular velocity, o, is the angular velocity of rotation of the vector V in the 
orbital frame of reference (OFR), r, denotes the radius-vector drawn from the satellite centre 
of mass to an element of area ds, and r is the normal to ds. In a circular orbit o, is identical 
with the orbital angular velocity CI+,. 

Previous research [l-4] omitted the vector w,. from Eq. (l.l), on the assumption that it 
could be ignored. This assumption is legitimate if one is studying the dynamics of the system at 
fairly large n values. It is advisable to allow for the effect of rotation of the incident flow 
together with the OFR. Then o, #O in (1.1) and the DAM is determined by the relative 
angular velocity vector 0. 

tPrik1. Mat. Mekh. Vol. 58, No. 1, pp. 13-20, 1994. 
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Assuming that the satellite is axisymmetric, we introduce a semi-fixed frame of reference 
(SFFR) with unit vectors i, j, k and origin at the satellite’s centre of mass, in such a way that k 
points along the axis of symmetry, the vector V lies in the (j, k) plane, and moreover 
(j:V) a 0. Let 6 be the angle of attack: 6 = (V:k). The absolute angular velocity of rotation of 
the body, Q, and the relative angular velocity of the body in the OFR, o= a-- q,, written in 
the SFFR are 42(&2,, C$,, Qr)r and o(o,, o,, oJr, respectively. 

Let us assume that the k axis is one of the principal central axes of inertia of the sateliite. We 
also introduce a fixed frame of reference (FFR) whose unit vectors i’, j’, k are the principal 
central axes of inertia of the satellite. In this system f2 and w are written as 4?&, q, r)T and 

e+:, w;, w:)r = Sz - w,e,, where e,@, p’, p”)’ are the coordinates of the unit vector normal to 
the orbit in the FFR. For a solid of revolution, formula (1.1) for the DAM M, in the SFFR 
becomes [l] 

-41 0 0 
M, =Dw, D=p,V 0 -&, 43 0.2) 

0 42 -43, 

where r>,(S) (i, i= 1, 2, 3) are coefficients depending on the shape of the satellite and its 
position relative to the flow [l]. 

To a first approximation one can make the following assumptions about the elements of (1.2) [l] 

0 
D11=L&=Dtl, D23=D ~in6, i3 

0 
D32=D32~id, D33=D33* o D;= amst (1.3) 

It was pointed out [4] that the approximation (1.3) does not accurately describe all the dynamical effects 
associated with aerodynamic diisipation. For example, according to (1.3), the angular moments vector 
of a “dumbbell” (an inextensible couple of two point masses) changes its orientation owing to the DAM 
only along an elliptical orbit, while remaining fixed along a circular orbit. In actual fact the orientation of 
the angular momentum vector L evolves along both elliptical and circular orbits [4]. It should be noted, 
however, that, according to fir], the vector L should he in the limit in the orbital plane, but that is not true. 
In the terminal regime, when the satellite has a low angular velocity, one can no longer omit the 
untwisting component of the DAM. 

We shall henceforth use the exact formula for the DAM in the FFR, allowing for the effect 
created by rotation of the OFR 

M; = D’o, D’ = pRv;=, 

-(Di,cos2qr+I)22sin2cp) (4, -D22)sin(cpcoscp 43 sin Cp 

(4, -&2)sinqcoscp -D(tlsin2cp+&2~~~2~) b3cosv) 

D,, sin cp D32 cos (fi -43 

(1.4) 

where q, is the angle of rotation of the FFR relative to the SFFR. 

2. THE DISSIPATIVE AERODYNAMIC MOMENT IN THE FIXED FRAME OF 
REFERENCE 

Let {a, a’, a”)* be the coordinates of the unit velocity vector e, in the FFR. Then, taking 
into account that 

cos2q = a’2/sin26, sin29 = a2/sin26 

one can use (1.4) to express the DAM in terms of the FFR for specific bodies. 
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For example, for a sphere of radius R 

-(3-a2) aa' 

M; =D,'o, D; = p,VC, aa’ 

I 

aa" 

-(3- a'2) a'a- , C, =;R' (2.1) 

aa" a'a" -(~-GL”~) 

For a “dumbbell,” i.e. a couple of two-point masses m, and m, of length I, with its axis in the 
k direction, we have 

-(l+a’2) aa' 0 

M;=Q’ti, q=poVCy aa' -(l+a’) 0 , 

0 0 0 

c = J&12 mtm2 
r 2 (mt +Q) 

2 (R; +R,2) (2.2) 

where R, and R2 may be treated as the radii of “virtual” spheres at the ends of the dumbbell. 
In a symmetric dumbbell m, = m, = m, RI = R, = R. 

For a symmetric three-dimensional dumbbell (a body made up of three identical symmetric 
dumbbells with intersecting axes, in such a way that the point masses lie at the vertices of an 
octahedron), we have an expression that differs from (2.1) only in that C, is replaced by C,. 
We may therefore expect that the DAM of a three-dimensional dumbbell with non-identical 
elements will be a good approximation for the DAM of a body with a surface of fairly general 
shape. Thus, for a “doubly symmetric” dumbbell (two of the three dumbbells are symmetric 
and identical and the third is symmetric but different from the fist two) we have the following 
superposition formula (corresponding dimensions lb”’ and 2) 

1/ 

-b(l+a’2)-(l+a”2) baa’ act” 

q2 =p,vc, bau -b(l+a2)-(1+a”2) a’a” , (2.3) 

aa” a'a" -(2+a'2+a"2) 

cu =x/2R.$;, b=R:lfl(R$$ 

where Rz and 1, are the elements of the two “transverse” dumbbells, and R, and I!, are those of 
the “axial” dumbbell. The tensor (2.3) is readily expressed as the superposition of the tensor 
for a sphere with C, 
(R;i;)l(R;l,2)- 1. 

=x/2R:Zi and the tensor for an axial dumbbell with CY =d2Rzc 

We may expect this superposition to be a satisfactory approximation for the DAM of any 

doubly symmetric body, whether elongated (RI4 > R&) or oblate (RI4 c R,l,). 
Throughout, o = n - q(p, p’, b”)‘. 

3. THE EVOLUTIONARY VARIABLES 

We shall describe the perturbed motion of the body relative to its centre of mass in 
evolutionary variables [l]: (L, p, o), (cp, ttr, 6), where L is the magnitude of the angular 
momentum vector L, p is theeangle between L and the normal n to the orbital plane, o is the 
angle between-the projection of L onto the orbital plane and the perigean radius-vector of the 
orbit q (Fig. la), ((pl, w, 6) are the Euler variables, which describe the orientation of the 
satellite relative to L, and u is the angle between L and the principal central axis of inertia k 
(Fig. lb). Since our satellite is dynamically symmetric (k is the dynamical axis of symmetry), 
the angle cp, becomes a cyclic variable. The angle of precession w is a “fast” variable, and the 
variables L , p, o, 6 are “slow”. 
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Fig. 1. 

To develop the evolution equations, we have to express the perturbed DAM, originally in 
the FFR, in terms of the fixed “perigean” frame of reference OXYZ (the Y axis points along 
the normal to the orbit and the Z axis along 1;) and then average over the fast variable w and 
the true anomaly v - the angle between q and the radius-vector of the satellite. 

4. THE EVOLUTION EQUATIONS FOR A SPHERE 

Suppose e is the eccentricity of the orbit, a is the semi-major axis of the orbit, P is its focal 
parameter, P = 41 -e’), and ~1 is the gravitational constant. 

Applying the procedure outlined above to (2.1), we obtain the following evolution equations 

-sin* p(J, sin’o+J, cos2 a)J+3u, cosp 

(J2 sin* o+ .I3 cos2 @sin 2p - 3u, sin p 

where 

!A=Ll(Awo), w. =j.&& No =J,+J, 

J2 =~a8(e+cos~)zf_~,_~(v)dv 

53 =-!$5. sin* vL2,+ 09~ 

D3 =~(l-e2)~h~F~,_XW~dV 
0 

f n,m =(1+ecosV)“(1+2ecosv+e2)” 

(4.1) 

The dot denotes differentiation with respect to the new dimensionless time 2, i;j = pa/p, is a 
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dimensionless density function [l], pz is the density at the perigee of the orbit, dz = A-‘p&dv, 
and A and C are the components of the inertia tensor of the satellite: J = diag (A, A, C). The 
first three equations without the terms in u1 are identical, apart from the notation, with the 
equations of [4]. Numerically computed curves of the functionals N1 and ul, plotted against 
the eccentricity for a standard atmosphere, are shown in Fig. 2. 

To fix our ideas, let us assume that A > C. It then follows from the last equation of (4.1) that 
6 + xl 2, ‘t + 0~. The rotational motion of the sphere tends to a purely axial motion about the 
transverse axis. Put 6 = K/ 2. Then Eqs (4.1) reduce to a linear system with separated variables, 
via the following substitutions: 

Q, = Qcosp, R, = -Qsinpcoso, Q, = -Qsinpsino 

We obtain 

al =-cQn+3u,, ti2, =-brR,, ti, =-CQ,, 

a = 3N,, b=3N,-J,, c=-(3N,,-J,,) (4.2) 

The system has the following first integrals 

Cd = Q”,lbl(S&, - v,lN,,), Cc2 = R ;I@ (4.3) 

It follows from the second of these integrals that in a circular orbit (J, = J3 = 1/2)ctgo = Cg, 
i.e. in a circular orbit a evolves in a constant plane (a, n) (the axes may be so chosen that 
a=O). 

Integrating system (4.2), we see that along an elliptical orbit tgo = tgo,, exp(J, - J&. Since 
J, < Ji,t it follows that o + 0 as z + 00. Set o = 0. It is clear from the above that the partial 
motion Q = x/ 2, o = 0 is stable and described by the two variables n and p. The solid curves in 
Fig. 3 are a phase portrait of the evolution of the motion of a spherical satellite in an elliptical 
orbit in the parameter plane (Q p). Values of Q are plotted along the ordinate axis in the 
range 0 < LI c 1, and values of Q-’ for Sz > 1. This inversion of the parameter plane [5] enables 
the phase portrait to be drawn in its entirety. 

The dashed curves in Fig. 3 represent the special case of a circular orbit. This phase portrait 
is structurally analogous to that of the tidal evolution of a celestial body along a circular orbit. 
While the value of the limit point of the evolution is the same (a* = 1, p = 0), a change occurs 
in the curve of the extrema with respect to the inclination p: instead of the set {Qcosp= 2), we 
have the set y,(Qcosp= 6), represented in Fig. 3 by the dash-dot curve. It is clear that the 
motion tends in the limit to rotation about an axis orthogonal to the orbital plane at an angular 
velocity equal to the orbital velocity. This obviously implies that the satellite takes up a relative 
equilibrium position in the OFR, which seems physically natural. In a previous treatment, 
however, the limiting values were R= 0, p= x/2 [4]. The discrepancy is due to the incomplete 
use of the model of the DAM in [l-4], as already pointed out in [l]. 

The fundamental difference between evolution along an elliptical orbit (Fig. 3) and evolu- 
tion along a circular orbit is the increase in the magnitude of the satellite’s angular velocity of 
rotation at the limit point of the evolution: (a* = u, lZV,, p = 0). The quantity n*(e) increases 
together with e, as shown in Fig. 2. 

t BELETSKII V. V. and GRUSHEVSKII A. V., The evolution of the axial rotations of an artificial satellite under the 
action of a dissipative aerodynamic moment. Preprint No. 75, Inst. Prikl. Mat. im. Keldysh, Akad. Nauk SSSR, Moscow, 
1991. 



16 V. V. Beletskii and A. V. Grushevskii 
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5. THE EVOLUTION OF THE MOTION OFA DUMBBELL-SHAPED SATELLITE 

For a d~bbe~l-shard satellite in an ellipti~ai orbit, the use of formuIa (2.2) and the 
procedure outlined above, includ~g averaging of the evolution equations, yields 

-sinp[u, +(I-iisin2B)(j,~os20+i,sin20)]) (5.1) 

Q&=+inl 
4 

+(J2 -J&in2fi+(j2 -jS)cosp ( -$in2 3)) 1 

&= +in2*([3No-sin2p(J2sin2~+JScos20)]-3qcosp) 

The variable n and new dimensionless time z are defined just as in (4.1). The coefficients JI, 
J,, No = J1 + J,, u, have the same form (4.1) as for a sphere, and the new coefficients are given 
by the following formulae 
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Obviously, U, = jZ + jS. 
For a dumbbell, the equation for 6 is purely formal, since the integral Lcosu = CL = 0 vanishes 

and 13=x/2. But the formal equation for 6 is necessary, for example, to construct 
superposition equations for a three-dimensional dumbbell. For the readily investigated case of 
a one-dimensional dumbbell one must put fi = x/2 in (Xl), which gives 

iz =-~]3N~-~in2p(J2sin20+J,cos20)]+~~,cosp 

J2sin2cr+Jscos20)sin2p-fsinb - +(j, cos* cr+ jj sin* 0) 

f&= asin20((J2 - J3)-(j2 - j3)cosp) 

For a circular orbit (J, = J3 = jZ = j3 = l! 2), obviously 
d = const 

The evolution equations of the dumbbell have the same structure as the corresponding 
equations for a sphere (5.1). The phase portrait for rotational motion of a dumbbell in the (a, 
p) plane (Fig. 4) also retains its similarity to the spherical case (Fig. 3). The curve of maxima 
with respect to p for a circular orbit has the form y,,,Z{ficosp = 3), represented by the dash-dot 
curve in Fig. 4. As in the spherical case, the limiting singular point of the evolution is 
determined by the values p*= 0, a* = 1 for a circular orbit and p* = 0, Q* = vl/NO for an 
elliptical orbit. 

It is noteworthy that Eqs (5.2) do not lead to a linear system in the same way that Eqs (4.1) 
led to system (4.2). Accordingly, no first integrals of type (4.3) have been observed for Eqs 
(5.3). 

The most interesting effects observed in the evolution of rotational motions of a spherical 
satellite and a dumbbell-shaped satellite due to the “untwisting” component of the DAM may 
be listed as follows: 

1. All motions (including initially retrograde motions) tend to forward rotation at zero 
inclination. In a circular orbit the limiting angular velocity of all motions equals the orbital 
velocity. 

2. Trajectories exist with initially small inclination which increases during the intermediate 
stage of the evolution, reaching a value of x/2. 

3. The angular velocity of the satellite may decrease to less than the orbital velocity, but it 
will subsequently return to the orbital value. 

u 
J?-’ 

r/z 

1 

R 

?v2 

P 
0 z2 A 

Fig. 4. 
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6. THE AEROGRADIENT EFFECT 

The complete aerodynamic moment for a dumbbell may be expressed as a sum 

where M, is the DAM and M, is the moment of the pressure forces of the aerodynamic flow: 

M=c&kxeV, c = x(pi&r - p2R%&i%4mt + m2)’ (6.1) 

Here e, is the unit vector in the direction of the forward velocity of the centre of mass of the 
dumbbell, k is the unit vector along the dumbbell axis (directed from m, to m,), m, and Ri are 
the masses and radii of the virtual spheres at the ends of the dumbbell, and p, and pz, denote 
the (generally different) atmospheric densities at the current positions of the masses m, and 
m-z. 

In computing the DAM M, one assumes p1 = pz, an assumption fully justified by the neglect 
of the relatively small interactive effect of the dissipation and the atmospheric density gradient. 
That is not the case with regard to the moment M, (6.1). For the very elongated objects that 
have been studied in the literature, the aerogradient effect may be considerable [3,5]. 

Let e, be the unit vector in the direction of the radius-vector of the orbit of the dumbbell’s 
centre of mass, and let r, = -4(4 + &-lZk, r, = -@(ml + %)-‘IL be the vector from the centre 
of mass to the end of the dumbbell. We put 

pl = PO exp(-qZo 1 HI, p2 = p0 exp(-& 1 f0 (6.2) 

where p0 is the density of the atmosphere at the level of the centre of mass, and H is the so- 
called “altitude of the uniform atmosphere”. Assuming that I/H41 and expanding the 
exponential functions in (6.2) in powers of this parameter, we obtain from (6.1), retaining the 
first two terms 

M1=Mo+M,, 

M()=Q+&kxe, M, = c,povi(ke,)k x e, (6.3) 

co = nl(mRf -m&)l(m, +m,), C,, =nf(l/H)(m,2R;2+m:R,Z)l(ml +m2)2 

The effect of a conservative aerodynamic moment M, of the type (6.3) on the evolution of 
the rotation and orientation of a satellite has been studied in detail [l, 31. The rate of evolution 
(on the average) is proportional to cos6, and therefore the motion of even an asymmetric 
dumbbell is not affected by M, (because in a dumbbell, by definition, cos19= 0). For a 
symmetric dumbbell, naturally M, = 0. 

The aerogradient moment M, has an untwisting effect and, as has been shown, produces on 
the average an evolution that is qualitatively similar to that produced by the untwisting 
component of the DAM (2.2). Thus, for a circular orbit, instead of the evolution equations 
(5.3), we get 

Q=L 
Ao, ’ 

K= 
r&R; +m,R; 

m,m2(Rf + R;)’ 
A=12mlM2, dz = W(R: + R; WI dt 

“I +m2 m, + in2 

(6.4) 

In particular, in a symmetric dumbbell K = 1. 
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Equations (5.3) are structurally identical to (5.3) and yield the same qualitative pattern of the 
motion, including the phase portrait in the (a, p) plane, which is similar to that shown in Fig. 4. 
Only the limit point p = 0; f2* = 1 +KPl(3H) corresponds to a considerably higher angular 
velocity (recall that P denotes the radius of the circular orbit of the centre of mass of the 
dumbbell). For a symmetric dumbbell, the limiting angular velocity R* = l+ 1@1(3H) does not 
depend at all on the parameters of the dumbbell, but only on the ratio of the orbit radius to the 
adjusted altitude of a uniform atmosphere (estimates of the limiting angular velocity in 
dimensional form give 1.5 to 3 degk). The rate of evolution, as is clear from (6.4), is indepen- 
dent of the length 1 of the dumbbell; this is natural, since the moments of the active forces and 
the moment of inertia of the dumbbell are both of the order of 12. 
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